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Abstract
The eigenvector expansion developed in the preceding paper for a system of
damped linear oscillators is extended to critical points, where eigenvectors
merge and the time-evolution operator H assumes a Jordan-block structure.
The representation of the bilinear map is obtained in this basis. Perturbations
ε�H around an Mth order critical point generically lead to eigenvalue shifts
∼ε1/M dependent on only one matrix element, with the M eigenvalues splitting
in equiangular directions in the complex plane. Small denominators near
criticality are shown to cancel.

PACS numbers: 02.10.Ud, 02.30.Mv, 45.30.+s

1. Introduction

The preceding paper [1] (hereafter referred to as I and equations therein as, e.g., (I.2.3))
developed an eigenvector expansion for a broad class of systems with N ohmically damped
coupled oscillators, also applicable to interacting and/or quantum systems. The key
concept is a bilinear map (ψ, φ), under which the time-evolution operator H is symmetric:
(ψ,Hφ) = (Hψ, φ), thus allowing concepts familiar from conservative systems to be
transcribed.

In I, it is assumed that (a) the eigenvectors f j of H are complete and (b) (f j ,f j ) �= 0
for all j . These are violated (together) only at critical points (with measure zero in parameter
space), where eigenvectors merge. This case is rather more technical, and H takes on a Jordan-
block (JB) structure. Some results are known in a continuum limit [2], but this paper gives a
self-contained account, putting the concept of critical damping into a general framework, in
which projections etc can still be performed using the bilinear map.
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Since merged eigenvectors no longer span the whole space, a basis has to be constructed—
the well-known Jordan normal basis [3]. Here, we need to represent the bilinear map (namely,
the metric g··) as well and verify that the resulting H·· is symmetric (section 2). Then time
evolution (section 2.6) and perturbation theory (section 3) are developed in this basis. The
latter also permits a discussion of small denominators near criticality.

An N = 1 example (section 3.1 in I) already illustrates criticality, and also explains its
name. Section 4 presents higher-order examples, including perturbations around them. We
end with a discussion in section 5. An extensive account can be found in [4].

We stress that when eigenvalues merge (degeneracy), either the eigenvectors merge as
well (criticality), or they remain distinct (level crossing)—though the latter is exceptional in a
sense to be made precise in section 4.

2. Jordan blocks

With the revival of interest in non-diagonalizable systems [5], JBs increasingly have the
attention of the physics community. Non-Hermitian operators occur in other contexts as well,
e.g., [6] and references therein. For any finite matrix H, a Jordan normal basis is known
to exist in general [3]. We briefly recapitulate some standard results in linear algebra, and
address the remaining fruitful object of study: the consequences of JBs for H of the specific
form (I.2.3), corresponding to the well-motivated dynamics (I.1.1) and leading to the bilinear
map (I.2.9).

2.1. Basis vectors

Suppose there are ν independent eigenvectors f j with eigenvalues ωj . If ν < 2N , the
dimensionality of phase space, the f j can be augmented into the Jordan normal basis
{f j,n}1�j�ν,0�n�Mj

, obeying

(H − ωj)f j,n = f j,n−1, (2.1)

with f j,−1 ≡ 0 so that f j,0 = f j . Separating positions and momenta, f j,n = (fj,n, f̂ j,n)
T.

The span of {f j,n}Mj −1
n=0 for fixed j is called the JB at ωj , with size Mj ; in it, H has the Jordan

normal form

H̄·· =




ωj 1 · · · 0 0

0 ωj

. . . 0 0
...

...
. . .

. . .
...

0 0 · · · ωj 1
0 0 · · · 0 ωj




(2.2)

with respect to the normal basis. The block structure {(ωj ,Mj )} is completely specified
by H, but vectors from blocks with identical eigenvalues may be mixed, as already shown
by degeneracies in the diagonalizable case. Until section 2.4, however, all ωj are assumed
distinct.

Then, the only arbitrariness consists of

f j,n �→
n∑

k=0

ckf j,n−k (2.3)
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with c0 �= 0, leaving (2.2) invariant and generalizing f j �→ cf j for simple ωj . This
freedom will be exploited below.

When JBs occur, J (ω) = det(H·· − ω) has a multiple zero. But this is not sufficient,
since it could also correspond to level crossing without JBs. This is why the formalism is
developed without reference to J—in contrast to the case of continuum models (section 6
in I).

2.2. Bilinear map

Although the Jordan normal form itself is standard, we need to consider the bilinear map
(f j,n,f j ′,n′). Using (2.1) on (Hf j,n,f j ′,n′) = (f j,n,Hf j ′,n′) yields

ωj(f j,n,f j ′,n′) + (f j,n−1,f j ′,n′) = ωj ′(f j,n,f j ′,n′) + (f j,n,f j ′,n′−1), (2.4)

for n � Mj − 1 and n′ � Mj ′ − 1.
Orthogonality for j �= j ′ is proved by induction with respect to n + n′. The case

n = n′ = 0 is the standard one as in (I.2.11). On each side of (2.4), the second term
vanishes by the induction hypothesis, leaving (ωj −ωj ′)(f j,n,f j ′,n′) = 0, and completing the
induction.

Next consider j = j ′; with M ≡ Mj and (n, n′) ≡ (f j,n,f j,n′), (2.4) gives
(n − 1, n′) = (n, n′ − 1), leading to

(n, n′) = An+n′ . (2.5)

For n � M − 2, we have An = (−1, n + 1) = 0 (again associating incomplete eigenvectors
with (f j ,f j ) = 0). If AM−1 also vanished, then f j,0 would be orthogonal to every basis
vector, which is impossible (cf below (I.2.16)). We can choose AM−1 = 1 and An = 0 for
M � n � 2M − 2. To show this, first perform a transform (2.3) with ck = c0δk0, under
which AM−1 �→ c2

0AM−1 = 1 for some c0 �= 0. Further transforms ck = δk0 + cnδkn for
n = 1, . . . , M − 1 take AM+n−1 = (n,M − 1) �→ AM+n−1 + 2cn = 0 by a choice of cn, while
AM+m−1 with m < n (taken care of in previous steps) are not affected (neither, of course, are
An = 0 for n < M − 1).

All these orthogonality relations are captured by

(f j,n,f j ′,n′) = δjj ′δn+n′,Mj −1, (2.6)

and completeness can be written as

φ =
∑
j,n

f j,n(f j,Mj −1−n, φ). (2.7)

Equation (2.6) can also be stated as a representation for ḡ·· in (one block of) the Jordan
normal basis:

ḡ·· =




0 0 · · · 0 1

0 0 · · · 1 0
...

... . .
. ...

...

0 1 · · · 0 0
1 0 · · · 0 0




. (2.8)
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It is now straightforward to verify that H̄·· is

H̄·· =




0 0 · · · 0 ωj

0 0 · · · ωj 1
...

... . .
.

. .
. ...

0 ωj . .
.

0 0
ωj 1 · · · 0 0




, (2.9)

a symmetric Jordan-type matrix.
Therefore, the duals defined by (cf (I.2.19))

f j,n ≡ Df j,n = [g··f j,Mj −1−n]∗ (2.10)

ensure

〈f j,n|f j ′,n′ 〉 = δj
j ′δn

n′ , (2.11)

I =
∑
j,n

f j,n〈f j,n|·〉, (2.12)

the latter in an obvious shorthand. In this case, Dφ cannot be calculated without first resolving
it in terms of the basis; contrast the non-critical case in I. Of course, the (unique) dual to
any basis {ek} can always be calculated by inverting the 2N × 2N Gramm matrix 〈ek|el〉
[3] without any reference to the bilinear map, but this matrix is not sparse for {ek} = {f j,n}.
The above has bypassed the general inversion in that all manipulations below (2.5) take place
within a (typically small) block only, made possible by (2.4) (cf the remarks in I, section 2.5).

Together with our normalization, (2.1) implies that the counterpart to (I.2.14) for conjugate
blocks reads

f−j,n = ±iMj (−)nf ∗
j,n, (2.13)

where the overall sign should be constant within a given block j . For a block with imaginary
frequency (a so-called zero-mode, see I) which does not cross with another block, we can set
j = 0 and (2.13) becomes a symmetry of the basis vectors. The treatment of level crossing
follows that in I and will not be repeated.

Incidentally, in most cases only one nontrivial JB (say j ) is formed at a given parameter
value. Then, the f j,n can be constructed without having to solve the linear system (2.1).
First, determine f j ; now ψ = [g··f j ]∗ is guaranteed to have (ψ,f j ) �= 0. Orthogonalize ψ
with respect to all the other eigenvectors (which does not change (ψ,f j ) �= 0); the result is
f j,Mj −1. After the f j,n with lower n are obtained from (2.1), the normal basis at ωj can be
biorthogonalized as above.

2.3. Example

Consider a single oscillator as in I, section 3.1, but at the critical k = k∗ = γ 2. The
eigenvector is f ,0 = c0(1,−γ )T. Then f ,1 = c0(−i/γ, 0)T + c1(1,−γ )T. One verifies
A0 = 0 and A1 = c2

0, independent of c1; we take c0 = 1. Finally A2 = 2(c1 − i/γ ) = 0 if
c1 = i/γ . With these choices, f ,0 = (1,−γ )T and f ,1 = (0,−i)T.

2.4. Level crossings

When levels cross in conservative systems, orthogonality is only a matter of choice. Here the
situation is more subtle still, since blocks of arbitrary size may cross. Suppose that the normal
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basis has ω1 = ω2 = · · · = ωL.3 The corresponding vectors (their number given by the order
of the zero in J (ω)) form an array, e.g.,

f 1,3 f 2,3

f 1,2 f 2,2 f 3,2

f 1,1 f 2,1 f 3,1

f 1,0 f 2,0 f 3,0 f 4,0;
(2.14)

each of the L columns corresponds to a JB, obeying (2.1). While level crossing is doubly
exceptional (as will be seen in examples), we give the rigorous treatment for the record.

We need to ensure

(f j,n,f j ′n′) = δjj ′δn+n′,Mj −1. (2.15)

It is immediately shown, in the usual way, that

(f j,n,f j ′,n′) = A
j,j ′
n+n′ , (2.16)

reducing the number of conditions to be checked. To proceed, we use the freedom

f j,n �→
L∑

j ′=1

n∑
k=m

c
j,j ′
k f j ′,n−k, (2.17)

where m = max(0,Mj − Mj ′). The mixing between blocks is the new feature here, as is
apparent from the case of two crossing trivial blocks. The lower limit k = m signifies that
large blocks can always mix into smaller ones, but not vice versa. For instance, in (2.14), the
only freedom in f 1,0 and f 2,0 consists in mixing these two vectors with each other.

We start by finding a normalizable ‘top’ vector. If M2 < M1, then f 1,M1−1 can be
normalized by the argument below (2.5). If there is no single largest block, consider the
quadratic form (φ, (H − ωj)

M1−1φ) in the span of all vectors f j,M1−1 (in the example (2.14),
j = 1, 2). This form cannot vanish identically, or else the corresponding eigenvectors f j,0
would be orthogonal to the entire space by (2.16). Take one vector on which the form is
nonzero, relabel it as f 1,M1−1 and redefine the other f j,M1−1 if necessary so that they still span
the same subspace. Subsequently, construct the associated lower f j,n by iterating H − ωj .
Clearly, the basis transformation of this paragraph is of the form (2.17).

In the block j = 1, one now has precisely the situation of section 2.2; consequently, this
block can be biorthogonalized as described there. It remains to orthogonalize the other blocks
with respect to the first one. Then relation (2.15) will hold for j = 1 and any j ′, which will
not change when the blocks j � 2 are mixed among themselves upon repeating the whole
procedure.

For orthogonalizing the blocks j � 2 with respect to the j = 1 block, completing
one iteration of the construction, it suffices to consider the top vectors f j,Mj −1: when
their associated block is reconstructed by iterating H − ωj , all vectors in it will be
orthogonal to {f 1,n} by virtue of (2.16). By the same token, (f j,Mj −1,f 1,n) = 0 already
if n < M1 − Mj . For n � M1 − Mj , this bilinear map can be made to vanish by
f j,Mj −1 �→ f j,Mj −1 + c

j,1
Mj +n−M1

f 1,M1−1−n. Thus, the needed mixings are precisely those
which conserve the block structure and are allowed by (2.17); e.g., in (2.14), in the course of
the above we do not mix f 1,3 into f 3,2.

Iterating the procedure until the number of blocks L is exhausted, we finally achieve (2.15)
in general. Clearly, all of the above goes through as well if level crossing occurs at several
frequencies.

3 A trivial constraint here is that the eigenvectors follow from the one-component (I.2.7). Hence, L � N , as will be
exemplified in section 4.1.
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2.5. Sum rules

Separating (2.7) into coordinates and momenta leads to four sum rules, which can be written
in terms of the coordinates alone. Using the shorthand n̄ = Mj − 1 − n,

0 =
∑
j,n

fj,n ⊗ fj,n̄ (2.18a)

I =
∑
j,n

[ωjfj,n + fj,n−1] ⊗ fj,n̄ (2.18b)

0 =
∑
j,n

[(
ω2

j fj,n + 2ωjfj,n−1 + fj,n−2
) ⊗ fj,n̄ + i(ωjfj,n + fj,n−1) ⊗ (�fj,n̄)

]
(2.18c)

0 =
∑
j,n

fj,n ⊗ (�fj,n̄). (2.18d)

Here, a ⊗ b is the matrix with elements a(α)b(β). We have verified these in, e.g., the examples
of section 4.

2.6. Time evolution

Since H is not diagonal, the basis vectors’ time dependence is slightly complicated. The
defining i∂tf j,n(t) = ωjf j,n(t) + f j,n−1(t) [f j,n(t=0) ≡ f j,n] is solved by

f j,n(t) =
n∑

l=0

Cl(ωj , t)f j,n−l , (2.19)

Cl(ωj , t) = (−it)l

l!
e−iωj t = 1

l!

[
∂l
ω e−iωt

]
ω=ωj

. (2.20)

The evolution of a general initial state φ(t=0) ≡ φ follows by simply putting f j,n �→ f j,n(t)

in (2.7). More formally, the retarded Green’s function thus reads

G(t) = θ(t)
∑

j

Mj −1∑
n=0

f j,n(t)〈f j,n|·〉. (2.21)

Since θ(t)Cl(ωj , t) �→ i(ω − ωj)
−l−1 under Fourier transform, this leads to

G̃(ω) =
∑

j

Mj −1∑
n=0

n∑
l=0

f j,n−l

i

(ω − ωj)l+1
〈f j,n|·〉, (2.22)

readily verified to solve (H − ω)G̃(ω) = −iI.

3. Jordan-block perturbation theory

3.1. Lowest order

Although perturbation theory has been given in I, the situation at a critical point is different,
exhibiting interesting features not found in conservative systems. For simplicity, consider
only the case without level crossing. Under a perturbation of a critical H0 given by (2.2) in
the Jordan normal basis,

H = H0 + ε�H, (3.1)
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a JB of size Mj to leading order generically behaves as follows. (a) The eigenvalue splits
into Mj different ones, shifting in equiangular directions and at the same rate in the complex
frequency plane. The directions for ε > 0 bisect those for ε < 0. (b) The frequency shifts go
not as ε but as ε1/Mj . (c) The shifts depend on only one element of the Mj × Mj matrix �H
within this block.

These features are already seen in the trivial N = 1,Mj = 2 example of I, section 3.1. For
k = k∗ + ε, ωj = −iγ ± √

ε, approaching the critical point along the real direction for ε > 0
(slightly underdamped) and along the imaginary direction for ε < 0 (slightly overdamped).

To derive the above properties, consider the eigenvalue equation. For the moment, focus
on one block; inter-block couplings will be added in section 3.2 without difficulty. From (2.2),
for its lowest-order determinant, H − ω is effectively represented by

H̄·· − ω =




ωj − ω 1 · · · 0 0

0 ωj − ω
. . . 0 0

...
...

. . .
. . .

...

0 0 · · · ωj − ω 1
εξ 0 · · · 0 ωj − ω




, (3.2)

where in the determinant

ξ ≡ 〈f j,Mj −1|�Hf j,0〉 = (f j,0,�Hf j,0) (3.3)

multiplies the 1s, and all other elements of �H are negligible because they multiply another
small quantity at least of order ωj − ω ≡ −�ω. Consequently, in

J (ω) = (−1)Mj [J0(ω) + εJ1(ω) + ε2J2(ω) + · · ·], (3.4)

one has J0(ω) = (�ω)Mj and J1(ωj ) = −ξ . Setting J (ω) = 0, one finds

�ωk = λζk, (3.5)

λ = (εξ)1/Mj , ζk = e2iπk/Mj , (3.6)

where λ is any fixed choice of the root measuring the magnitude of the shift, ζk displays
the equiangular behaviour, and k = 0, . . . ,Mj − 1. A change in sgn ε costs a phase eiπ/Mj ,
causing the directions to bisect the original ones.

Incidentally, for the conservative case with degeneracies, (3.2) would not have the 1s and
the crucial term ξ does not appear at this low order.

The eigenvectors can be expressed as4

f k =
Mj −1∑
n=0

f j,nT
n
k; (3.7)

upon setting ω = ωk in (3.2), one solution is

T n
k = (λζk)

n (3.8)

(so (T −1)kn = (λζk)
−n/Mj ), with normalization

(f k,f k) = Mj(λζk)
Mj −1. (3.9)

4 The kth eigenvalue to split off from (or merge into) a JB labelled as j should be denoted as, e.g., ωj(k), k =
0, . . . , Mj − 1; to avoid overly cumbersome notation, we shall simply write ωk (and likewise for the eigenvectors).
This is also appropriate in that for a finite splitting, it is no longer possible to associate the ωk unambiguously with a
block j from which they split.



8890 S C Chee et al

The above applies to any H cast into Jordan normal form. But in the present case, H is
given by (I.2.3); in particular, we assume that �H does not affect the coupling to the bath, so
�� = 0 as in (I.4.1). Then,

ξ = fj (α)�K(α, β)fj (β) = (�K)jj , (3.10)

in terms of the coordinates only. In the example of I, section 3.1, if we let K = k∗ + ε, i.e.,
�K = 1, then (3.10) gives ξ = 1 so (3.5) gives �ωk = √

ε eiπk , as expected.

3.2. Higher orders

To deal with higher-order corrections, we rewrite

H = H0 + ε�H = H′
0 + ε�H′, (3.11)

shifting the term εξ to the unperturbed part, so that (3.7) diagonalizes H′
0. In other words,

〈f j,Mj −1|�H′f j,0〉 = 0.
The matrix elements of �H′ in the split basis (3.7) follow by transforming those in the

Jordan normal basis,

(�H′)kk′ = (T −1)kn〈f j,n|�H′f j,n′ 〉T n′
k′ = 1

Mj

Mj −1∑
n,n′=0

ζ n′
k′ ζ

−n
k λn′−n〈f j,n|�H′f j,n′ 〉. (3.12)

Because the term (n′ = 0, n = Mj − 1) has been removed to H′
0, the lowest power of λ is

λ2−Mj . Together with ε = λMj , the leading correction is O(λ2), one power of λ higher than
the effect due to ξ treated in section 3.1; it can be handled by the standard perturbation theory
as in I. Each higher-order correction will involve an extra matrix element ∝ λ2, divided by
ωk − ωk′ ∝ λ, giving one overall power of λ per order. Inter-block matrix elements of �H′

can be handled in the split basis as well.
In fact, there is not much to be gained by further analytic treatment; one can simply

diagonalize the relevant Mj ×Mj block ofH numerically and deal with inter-block interactions
in the resultant basis, using the non-degenerate perturbation theory of I.

3.3. Nongeneric perturbations

The perturbation of a JB is said to be nongeneric when ξ = (�K)jj = 0. The simplest way
to proceed is to expand (3.4) around ωj ,

0 = (−1)Mj J (ω)

= (�ω)Mj + ε[J1(ωj ) + �ωJ ′
1(ωj ) + · · ·] + ε2[J2(ωj ) + · · ·] + · · · . (3.13)

In this case, J1(ωj ) = 0; assuming there is no higher-order nongenericity, i.e., J ′
1(ωj ) �= 0,

(3.13) gives

0 = �ω[(�ω)Mj −1 + εJ ′
1(ωj ) + · · ·] + · · · . (3.14)

Thus we see that (a) one state is unshifted to lowest order, and (b) the other states split like a
generic JB of order Mj −1, namely with |�ω| ∝ ε1/(Mj −1) and splitting in Mj −1 equiangular
directions. (If Mj = 2, the ε2J2(ωj ) term is of the same order and must be retained.) This
situation will be seen in some of the examples in section 4. The exercise analogous to (3.2),
(3.3) and (3.10) shows that J ′

1(ωj ) = −2ξ ′, with

ξ ′ = (f j,1,�Hf j,0) = fj,1(α)�K(α, β)fj,0(β). (3.15)

Not much is gained by formally pursuing nongeneric perturbations any further, since in
applications it is again preferable to simply diagonalize the (typically small) JB.
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3.4. Small denominators near criticality

The above resolves the ‘small-denominator problem’. Time evolution near a critical point ωj

is given by

φ(t) =
∑

k

′
e−iωktf k

(f k, φ)

(f k,f k)
, (3.16)

where the prime denotes restriction to one cluster of modes f k , which are close to merging at
ωj as parameters are tuned. Already in part I it has been argued that then (f k,f k) → 0 while
(f k, φ) is finite, apparently causing φ(t) to diverge. However, by using (3.7)–(3.9) and also
(3.5) as e−iωkt = e−iωj t

∑
l�0(−iλζkt)

l/ l! = ∑
l�0(λζk)

lCl(ωj , t), we get

φ(t) =
∑
l�0

Cl(ωj , t)

Mj

Mj −1∑
n,n′=0

f j,n(f j,n′ , φ)
∑

k

(λζk)
m, (3.17)

where m = n + n′ + l + 1 − Mj can be negative. But by (3.6),
∑

k vanishes unless m ≡ 0
(mod Mj). Since the above is only valid to leading order anyway, we only keep m = 0
terms, so

∑
k · · · = Mj and (3.17) reduces to φ(t) = ∑

n f j,n(t)〈f j,n|φ〉 by (2.19). Thus, the
small denominators cancel (i.e., negative powers of λ do not appear): while the contributions
per mode to φ(t) are large, their sum remains finite. Moreover, the latter agrees with (2.21),
obtained in the Jordan normal basis at ωj (to lowest order; in general, φ(t) smoothly depends
on system parameters as these go through their critical values).

Similar arguments prove the cancellation of small denominators in other physical
quantities, or for other splitting patterns (section 3.3). These exactly parallel the discussion of
excess noise (over the standard Schawlow–Townes value) in lossy laser cavities [7, 8]. In fact,
only the noise per mode is enhanced while the sum over all (non-orthogonal) modes has no
excess contribution, consistent with the fluctuation–dissipation theorem. Only perturbation
theory requires special care: while a near-critical mode cluster shifts other eigenvalues
by a finite amount, the cluster’s modes themselves are highly sensitive to perturbations
(section 3.2)—indeed, no cancellation is expected in the properties of individual modes.

4. Examples of higher-order criticality

We construct some examples with JBs of size M � 2. It suffices to consider an N = 2 system,
with

K =
(

k11 k12

k12 k22

)
, � = 2

(
γ11 γ12

γ12 γ22

)
, (4.1)

involving six parameters in general.

4.1. Fourth-order JB

To find an M = 4 JB, let J (ω) have a fourth-order zero:

det(H·· − ω) = (ω + ia)4 (4.2)

(necessary but not sufficient, since equality of eigenvalues could also indicate level crossing;
the further conditions will be considered later). The position of the root has to be on the
negative imaginary axis (or else there would be another root at −ia∗). Without loss of
generality, we henceforth set a = 1, and the a-dependence can eventually be restored by
scaling K �→ a2K,� �→ a�, ω �→ aω.
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Eliminating the momenta in (H·· − ω)φ = 0, i.e., setting ω = −i in (I.2.7), gives

(K − � + I )φ = 0. (4.3)

Generically, there is only one independent φ satisfying (4.3), hence only one eigenvector φ,
hence an M = 4 JB.

Equation (4.2) leads to four conditions for the coefficients of ω3, . . . , ω0, which after
some simplification give

k11k22 − k2
12 = 1

γ11 + γ22 = 2

k11 + k22 + 4
(
γ11γ22 − γ 2

12

) = 6

k11γ22 + k22γ11 − 2k12γ12 = 2.

(4.4)

The general solution for K involves two parameters:

K =
(

ey cosh x sinh x

sinh x e−y cosh x

)
, (4.5)

solving the first of the four constraints. For any x, y, the three remaining equations determine
the three γij . Positivity of K is guaranteed, while � � 0 requires cosh x cosh y � 3. A simple
choice (which satisfies this as an equality) is sinh x = −2, e2y = 5, giving

K =
(

5 −2
−2 1

)
, � =

(
4 0
0 0

)
. (4.6)

The Jordan normal basis is constructed to be

f ,0 = √
2i(1, 1,−1,−1)T

f ,1 = 1
2

√
2(−1, 1, 3, 1)T

f ,2 = 1
8

√
2i(−1,−1, 5,−3)T

f ,3 = 1
16

√
2(−1, 1,−1,−3)T,

(4.7)

normalized as in (2.6). These vectors are arbitrary up to one overall sign, and exemplify the
formalism in section 2. In particular, the alternation of real and imaginary basis vectors is
prescribed by (2.13), here realized with the lower sign. The duals follow from (2.10) as

f ,0 = 1
16

√
2i(5, 3, 1,−1)T

f ,1 = 1
8

√
2(−1, 3, 1, 1)T

f ,2 = 1
2

√
2i(1,−1, 1,−1)T

f ,3 = √
2(−3, 1,−1,−1)T,

(4.8)

and are readily verified to obey (2.11).
It is possible to have more than one φ satisfy (4.3). For a 2 × 2 system, this requires

K − � + I = 0, which together with (4.5) fixes γij . When put back into the three remaining
equations in (4.4), these lead to one additional condition cosh x cosh y = 1, which has only
the solution x = y = 0—the trivial case of two independent but identical oscillators, each
generating an M = 2 JB at the critical point. Apparently, with N = 2, one cannot have a
crossing between M = 3 and M = 1 blocks. Thus, level crossing occurs only exceptionally,
under the additional condition that a minor determinant of H·· − ω vanishes. The JBs of the
two oscillators can be mixed, illustrating the subtleties encountered in section 2.4. However,
taking complex superpositions will, in general, break the symmetry (2.13), generalizing the
discussion below (I.2.14).
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Figure 1. Eigenvalues for an M = 4 JB split by k11 �→ k11 + ε, with ε = n4ε0, n = 0, 1, 2, . . . .
(a) ε0 = 10−4; (b) ε0 = −10−4. Crosses (circles) denote numerical (perturbative) values. The
nearly equal spacing shows that the shifts are ∝ ε1/4.

It is instructive to consider perturbations around the M = 4 JB (4.6)–(4.8). First, let
k11 �→ k11 +ε, and evaluate the lowest-order result (3.5) (with ξ = −2) for various ε; these are
shown by the circles in figure 1, illustrating the properties below (3.1). The exact numerical
eigenvalues, shown by the crosses in figure 1, demonstrate the accuracy of perturbation theory.
Second, consider the more general kij �→ kij + εµij , with µij = O(1). By expanding J (ω)

for the model (4.1) as in (3.4), we find

J1(−i) = (k22 + 1 − 2γ22)µ11 + (k11 + 1 − 2γ11)µ22 + 2(2γ12 − k12)µ12. (4.9)

For the parameters of (4.6), this vanishes if µ11 = 1, µ12 = − 3
2 , µ22 = 2, yielding a

nongeneric perturbation (ξ = 0 in (3.10)). Figure 2 shows the eigenvalues versus ε (crosses
and circles as in figure 1). To leading order one is not shifted, while the others split like
a generically perturbed M = 3 block (i.e., ∼ε1/3, smaller than the typical shift ∼ε1/4)—in
quantitative agreement with the perturbative (3.14) and (3.15), where presently ξ ′ = i.
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Figure 2. Eigenvalues for an M = 4 JB split by the nongeneric perturbation kij �→ kij + εµij ,
µ11 = 1, µ12 = − 3

2 , µ22 = 2; ε = n3ε0, n = 0, 1, 2, . . . . (a) ε0 = 10−4; (b) ε0 = −10−4.
Crosses (circles) denote numerical (perturbative) values. Three of the eigenvalues split at 120◦;
the nearly equal spacing shows that the shifts are ∝ ε1/3. The fourth, nearly unchanged, eigenvalue
is shown in greater detail in the inset.

4.2. Third-order JB

Next consider a third-order JB, mainly to show that odd M �= 1 is allowed. For N = 2, this
is achieved by setting J (ω) = (ω + i)3(ω + ib), with b �= 1. The triple root has been scaled
to −i. As before, one obtains

k11k22 − k2
12 = b

γ11 + γ22 = (3 + b)/2

k11 + k22 + 4
(
γ11γ22 − γ 2

12

) = 3(1 + b)

k11γ22 + k22γ11 − 2k12γ12 = (1 + 3b)/2.

(4.10)
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Figure 3. Eigenvalues for an M = 3 JB split by k11 �→ k11 + ε, with ε = n3ε0, n = 0, 1, 2, . . . .
(a) ε0 = 10−4; (b) ε0 = −10−4. Crosses (circles) denote numerical (perturbative) values. The
nearly equal spacing shows that the shifts are ∝ ε1/3.

We work in the eigenbasis of � (cf section 3.2 and footnote 3, both in I) from the outset, and
can solve for the remaining parameters in terms of γ11 and b. This involves rationals only for,
e.g., b = 4 and K = 1

5

( 41
8

8
4

)
, � = ( 6

0
0
1

)
, where for variation we took � > 0.

The basis vectors are found to be

f 1,0 = eiπ/4
√

15
15 (2,−4,−2, 4)T

f 1,1 = e−iπ/4
√

15
180 (−19,−22, 43,−26)T

f 1,2 = eiπ/4
√

15
2880 (−221,−78, 525, 430)T

f 2,0 = eiπ/4
√

15
45 (8,−1,−32, 4)T.

(4.11)
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Figure 4. Eigenvalues for an M = 3 JB split by kij �→ kij + εµij , with µ11 = −2, µ22 = 1,

µ12 = 1/2 chosen so that the perturbation is nongeneric, and ε = n2ε0, n = 0, 1, 2, . . . .
(a) ε0 = 10−4; (b) ε0 = −10−4. Crosses (circles) denote numerical (perturbative) values. Two of
the eigenvalues split at 180◦; the nearly equal spacing shows that the shifts are ∝ ε1/2. The third
eigenvalue is nearly unchanged, and is shown in greater detail in the inset.

It is seen that the j = 1 (j = 2) block obeys (2.13) with the lower (upper) sign; apparently,
not much can be said about this sign in general. The dual vectors are

f 1,0 = eiπ/4
√

15
2880 (801,−352, 221, 78)T

f 1,1 = e−iπ/4
√

15
180 (−71,−48,−19,−22)T

f 1,2 = eiπ/4
√

15
15 (−10, 0,−2, 4)T

f 2,0 = eiπ/4
√

15
45 (−16,−3,−8, 1)T.

(4.12)

Next change k11 �→ k11+ ε, giving ξ = 4
15 i; figure 3 shows the eigenvalues emanating from

the JB (conventions as before). For kij �→ kij + εµij , the choice µ11 = −2, µ12 = 1
2 , µ22 = 1

makes ξ = 0, eliminating the leading term, while ξ ′ = 1 in the next order. Figure 4 shows the
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Figure 5. Eigenvalues for two M = 2 JBs split by k11 �→ k11 + ε, with ε = n2ε0, n = 0, 1, 2, . . . .
(a) ε0 = 10−4; (b) ε0 = −10−4. Crosses (circles) denote numerical (perturbative) values. Only
the right-half ω-plane is shown. The nearly equal spacing shows that the shifts are ∝ε1/2.

eigenvalues; to leading order, one is not shifted, while the other two split like a generically
perturbed M = 2 block.

4.3. Two second-order JBs

So far, the examples only involve JBs with imaginary frequencies. This is not necessary:
consider two second-order JBs at ω = −i ± b, by setting J (ω) = (ω + i − b)2(ω + i + b)2. As
before, this leads to

k11k22 − k2
12 = (1 + b2)2

γ11 + γ22 = 2

k11 + k22 + 4
(
γ11γ22 − γ 2

12

) = 6 + 2b2

k11γ22 + k22γ11 − 2k12γ12 = 2(1 + b2).

(4.13)
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Guided by section 4.1, without loss of generality we proceed in the eigenbasis of �. With
γ12 = 0, (4.13) can be readily solved for the remaining parameters in terms of b and γ11.
Again we consider the marginal case γ11 = 2, and a final simplification occurs for b = 4

3 , in
which case all kij turn out rational: K = 1

9

( 61
−30

−30
25

)
and � = ( 4

0
0
0

)
.

The basis vectors read

f 1,0 =
√

6
24 (3 − 6i,−3 − 6i,−11 + 2i,−5 + 10i)T

f 1,1 =
√

6
192 (15 + 30i,−15 + 30i,−23 − 74i, 7 + 14i)T,

(4.14)

the conjugates f−1,n following from (2.13). Their duals,

f 1,0 =
√

6
192 (−46 − 37i,−14 − 7i,−30 − 15i,−30 + 15i)T

f 1,1 =
√

6
24 (22 − i,−10 + 5i, 6 − 3i, 6 + 3i)T ,

(4.15)

obey (2.11) not only with the vectors in (4.14), but also with their conjugates f−1,n.
Figure 5 shows the eigenvalues when k11 �→ k11 + ε, where in this case ξ = −(9+12i)/32.

(Because of symmetry, only the right-half ω-plane is shown.)
Finally, consider (4.13) for variable b, keeping � = diag(4, 0) fixed. One readily solves

for K(b), which (choosing k12(b) < 0) for b → 0 tends to K as in (4.6). Reversing the
procedure, one thus has found a highly nongeneric perturbation splitting an M = 4 JB into two
M = 2 JBs, which do not undergo further splitting. Note that the familyH(b) is not of the form
(3.1): it is impossible to obtain this particular structure with only a first-order correction �H,
if the latter corresponds to �K �= 0 only. See sections 6.2 and 6.3 (final paragraph) in [2],
where the existence of off-axis JBs in a continuum model is studied as an open question.

5. Discussion

We have extended the eigenvector expansion developed in the previous paper [1] to situations
where the eigenvectors merge and thus are incomplete. The Jordan normal basis is then used.
Such a basis for a general matrix operator H (not self-adjoint) is well known, but here its
properties have to be considered together with the bilinear map. The bi-orthogonality of the
Jordan normal basis, most simply expressed by the metric (2.8), has been established: part of
it being intrinsic and part of it being a conventional choice. As a consequence, H·· takes the
symmetric Jordan-type form (2.9).

The Jordan basis vectors (like the eigenvectors in the non-critical case) immediately solve
the dynamics. The time evolution of these vectors f j,n is characterized by a polynomial
prefactor in t, as expected when several exponential terms with slightly different frequencies
merge.

Perturbations around critical points are particularly interesting, a term ε�H shifting
frequencies by a fractional power of ε in equiangular directions. Their study allows the
small-denominator problem associated with (f k,f k) → 0 at criticality to be handled.

All these concepts have been illustrated by nontrivial examples. By treating criticality, this
paper complements the previous one [1], and places the familiar concept of critical damping
into a general framework. As in [1], the entire formalism can be promoted to the quantum
domain by turning the state vectors into operators.
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